如图,某居民小区有一朝向为正南方向的居民楼,该居民楼的一楼是高米的小区超市,超市以上是居民住房,在该楼的前面米处要盖一栋高米的新楼.当冬季正午的阳光与水平线的夹角为时.()问超市以上的居民住房采光是否有影响,为什么?()若要使超市采光不受影响,两楼应相距多少米?(参考数据:sin≈,cos≈≈.)
如图,反比例函数与一次函数的图象交于两点A(1,3)、B(n,-1).(1)求这两个函数的解析式;(2)观察图象,请直接写出不等式的解集;(3)点C为x轴正半轴上一点,连接AO、AC,且AO=AC,求⊿AOC的面积.
已知二次函数.(1)求证:不论为何实数,此二次函数的图象与轴都有两个不同交点;(2)若此函数有最小值,求这个函数表达式.
已知抛物线y=-x2+2x+2. (1)该抛物线的对称轴是 ,顶点坐标 ; (2)选取适当的数据填入下表,并在下图的直角坐标系内描点画出该抛物线的图象;
(3)若该抛物线上两点A(x1,y1),B(x2,y2)的横坐标满足x1>x2>1,试比较y1与y2的大小.
如图,∠ACB=∠ADC=90°,AC=,AD=2.问当AB的长为多少时,这两个直角三角形相似?
如图,一个二次函数的图象经过点A、C、B三点,点A的坐标为(),点B的坐标为(3,0),点C在y轴的正半轴上,且AB=OC.(1)求点C的坐标;(2)求这个二次函数的解析式,并求出该函数的最大值.