问题1如图①,一张三角形ABC纸片,点D、E分别是△ABC边上两点.研究(1):如果沿直线DE折叠,使A点落在CE上,则∠BDA′与∠A的数量关系是什么?研究(2):如果折成图②的形状,猜想∠BDA′、∠CEA′和∠A的数量关系是什么?研究(3):如果折成图③的形状,猜想∠BDA′、∠CEA′和∠A的数量关系,并说明理由.研究(4):将问题1推广,如图④,将四边形ABCD纸片沿EF折叠,使点A、B落在四边形EFCD的内部时,∠1+∠2与∠A、∠B之间的数量关系是什么?
有资料表明:某地区高度每增加100米,气温降低0.8℃,小明和小红想出一个测量山峰高度的办法,小红在山脚,小明在山顶,他们同时在上午9时测得山脚温度是2.6℃,山顶温度是-2.2℃.你知道山峰的高度吗?
解方程:.
甲、乙两重灾区急需一批大型挖掘机,甲地需25台,乙地需23台;A.B两省获知情况后慷慨相助,分别捐赠挖掘机26台和22台并将其全部调往灾区.若从A省调运一台挖掘机到甲地要耗资0.4万元,到乙地要耗资0.3万元;从B省调运一台挖掘机到甲地要耗资0.5万元,到乙地要耗资0.2万元.设从A省调往甲地台,A.B两省将捐赠的挖掘机全部调往灾区共耗资y万元.(1)求出y与x之间的函数关系式及自变量x的取值范围;(2)若要使总耗资不超过15万元,有哪几种调运方案?(3)怎样设计调运方案能使总耗资最少?最少耗资是多少万元?
如图,在△ABC中,∠C=90°,AB的垂直平分线交AC于点D,垂足为E,若∠A=30°,CD=2.(1)求∠BDC的度数;(2)求BD的长.
如图,四边形ABCD的对角线AC与BD相交于O点,∠1=∠2,∠3=∠4.求证:(1)△ABC≌△ADC;(2)BO=DO.