如图,在Rt△ABC中,∠ACB=90º,AC=3cm,BC=4cm.动点P从点B出发,以每秒1cm的速度沿射线BA运动,求出点P运动所有的时间t,使得△PBC为等腰三角形.
喝绿茶前需要烧水和泡茶两个工序,即需要将电热壶中的水烧到100℃,然后停止烧水,等水温降低到适合的温度时再泡茶,烧水时水温 (℃)与时间菇(min)成一次函数关系;停止加热1分钟后(1分钟内水温不变),水壶中水的温度y(℃)与时间 (min)近似于反比例函数关系(如图).已知水壶中水的初始温度是20℃,降温过程中水温不低于20℃.(1)求出图中AB所在直线对应的函数关系式,并且写出自变量的取值范围;(2)从水壶中的水烧开(100℃)降到80℃就可以进行泡制绿茶,问从水烧开到泡茶需要等待多长时间?
佳佳果品店刚试营业,就在批发市场购买某种水果销售,第一次用1200元购进若干千克水果,并以每千克定价7元出售,很快售完.由于水果畅销,第二次购买时,每千克的进价比第一次提高了20%,用1500元所购买的数量比第一次多10千克.(1)求第一次该种水果的进价是每千克多少元?(2)佳佳果品店在第二次进货后,以每千克定价7元售出200千克水果后,因出现高温天气,水果不易保鲜,为减少损失,便以定价的4折售完剩余的水果,该果品店在这两次销售中,总体上是盈利还是亏损(不考虑其它因素)?若赔钱,赔多少?若赚钱,赚多少?
如图,在平面直角坐标系中,反比例函数的图象和矩形ABCD在第一象限,AD平行于轴,且AB=2,AD=4,点A的坐标为(2,6).(1)直接写出B、C、D三点的坐标.(2)若将矩形向下平移,矩形的两个顶点恰好同时落在反比例函数的图象上,猜想这是哪两个点,并求矩形的平移距离和反比例函数的解析式.
如图,△ABC中,AB=AC,AD、AE分别是∠BAC和∠BAC的外角的平分线,BE⊥AE(1)求证:DA⊥AE;(2)试判断AB与DE是否相等?并证明你的结论.
已知正比例函数和反比例函数的图象交于点A(m,一2).(1)求反比例函数的解析式;(2)观察图象,直接写出正比例函数值大于反比例函数值时自变量的取值范围;(3)若双曲线上点c(2,n)沿OA方向平移个单位长度得到点B,判断四边形OABC的形状并证明你的结论.