(本小题满分10分)选修4—4:坐标系与参数方程 已知直线l的参数方程为(t为参数,m为常数),以直角坐标系xOy的原点O为极点,x轴的正半轴为极轴建立极坐标系,圆C的极坐标方程为:ρ2-2ρsinθ-4=0,且直线l与圆C交于A、B两点. (1)若|AB|=,求直线l的倾斜角; (2)若点P的极坐标为(,),且满足2,求此时直线l的直角坐标方程.
(本题10分)甲、乙、丙三名射击运动员射中目标的概率分别为(0<a<1),三各射击一次,击中目标的次数记为。(Ⅰ)求的分布列;(Ⅱ)若的值最大,求实数a的取值范围。
(本题8分)某果园要用三辆汽车将一批水果从所在城市E运至销售城市F,已知从城市E到城市F有两条公路。统计表明:汽车走公路Ⅰ堵车的概率为,走公路Ⅱ堵车的概率为,若甲、乙两辆汽车走公路Ⅰ,第三辆汽车丙由于其他原因走公路Ⅱ运送水果,且三辆汽车是否堵车相互之间没有影响。(Ⅰ)求甲、乙两辆汽车中恰有一辆堵车的概率。(Ⅱ)求三辆汽车中至少有两辆堵车的概率。
(本题8分)甲、乙、丙三人独立完成某项任务的概率分别为。且他们是否完成任务互不影响。(Ⅰ)若,设甲、乙、丙三人中能完成任务人数为X,求X的分布列和数学期望EX;(Ⅱ)若三人中只有丙完成了任务的概率为,求的值
(本题6分)某学校组织课外活动小组,其中三个小组的人员分布如下表(每名同学只参加一个小组):
学校要对这三个小组的活动效果进行抽样调查,按分层抽样的方法从小组成员中抽取6人,结果摄影小组被抽出3人。(Ⅰ)求a的值;(Ⅱ)从书法小组的人中,随机选出3人参加书法比赛,求这3人中初、高中学生都有的概率。
(本题6分)已知函数的图象过点P(0,2),且在点处的切线方程为。(Ⅰ)求函数的解析式;(Ⅱ)求函数的单调区间。