(本小题满分10分)选修4—4:坐标系与参数方程 已知直线l的参数方程为(t为参数,m为常数),以直角坐标系xOy的原点O为极点,x轴的正半轴为极轴建立极坐标系,圆C的极坐标方程为:ρ2-2ρsinθ-4=0,且直线l与圆C交于A、B两点. (1)若|AB|=,求直线l的倾斜角; (2)若点P的极坐标为(,),且满足2,求此时直线l的直角坐标方程.
已知二次函数(),若是从区间中随机抽取的一个数,是从区间中随机抽取的一个数,求方程没有实数根的概率.
如图,在四棱锥中,为正三角形,平面,为的中点.(1)求证:平面;(2)求证:平面.
已知三点,,.(1)求与的夹角;(2)求在方向上的投影.
定义在上的函数,如果满足:对任意,存在常数,都有 成立,则称是上的有界函数,其中称为函数的一个上界.已知函数,. (1)若函数为奇函数,求实数的值;(2)在(1)的条件下,求函数在区间上的所有上界构成的集合;(3)若函数在上是以3为上界的有界函数,求实数的取值范围.
已知圆的方程:,其中.(1)若圆C与直线相交于,两点,且,求的值;(2)在(1)条件下,是否存在直线,使得圆上有四点到直线的距离为,若存在,求出的范围,若不存在,说明理由.