(本题6分)某学校组织课外活动小组,其中三个小组的人员分布如下表(每名同学只参加一个小组):
学校要对这三个小组的活动效果进行抽样调查,按分层抽样的方法从小组成员中抽取6人,结果摄影小组被抽出3人。(Ⅰ)求a的值;(Ⅱ)从书法小组的人中,随机选出3人参加书法比赛,求这3人中初、高中学生都有的概率。
学校游园活动有这样一个游戏项目:甲箱子里装有3个白球、2个黑球,乙箱子里装有1个白球、2个黑球,这些球除颜色外完全相同,每次游戏从这两个箱子里各随机摸出2个球,若摸出的白球不少于2个,则获奖.(每次游戏结束后将球放回原箱) (Ⅰ)求在1次游戏中,(i)摸出3个白球的概率;(ii)获奖的概率; (Ⅱ)求在2次游戏中获奖次数的分布列及数学期望.
在中,已知内角所对的边分别为,向量,且//, 为锐角. (1)求角的大小;(2)设,求的面积的最大值.
已知在上是增函数,在上是减函数,且方程有三个根,它们分别为,2,. (Ⅰ)求的值;(Ⅱ)求证:;(Ⅲ)求的取值范围.
设椭圆的左焦点为,上顶点为,过点与垂直的直线分别交椭圆和轴正半轴于,两点,且分向量所成的比为8∶5. (1)求椭圆的离心率; (2)若过三点的圆恰好与直线:相切,求椭圆方程.
数列中,且满足 ⑴求数列的通项公式; ⑵设,求; ⑶设=,是否存在最大的整数,使得对任意,均有成立?若存在,求出的值;若不存在,请说明理由。