(1)抛物线的顶点为坐标原点,对称轴为坐标轴,又知抛物线经过点P(4,2),求抛物线的方程;(2)已知抛物线C:x2=2py(p>0)上一点A(m,4)到其焦点的距离为,求p与m的值.
已知椭圆的两焦点是F1(0,-1),F2(0,1),离心率e= (1)求椭圆方程;(2)若P在椭圆上,且|PF1|-|PF2|=1,求cos∠F1PF2。
已知函数f(x)=(1+x)2-4a lnx(a∈N﹡). (Ⅰ)若函数f(x)在(1,+∞)上是增函数,求a的值; (Ⅱ)在(Ⅰ)的条件下,若关于x的方程f(x)=x2-x+b在区间[1,e]上恰有一个实根,求实数b的取值范围.
已知点列在直线上,P1为直线轴的交点,等差数列的公差为1 。 (1)求、的通项公式;; (2)若,试证数列为等比数列,并求的通项公式。 (3).
已知函数f(x)=ln(1+x)-. (1)求f(x)的极小值; (2)若a、b>0,求证:lna-lnb≥1-.
已知甲盒内有大小相同的1个红球和3个黑球, 乙盒内有大小相同的2个红球和4个黑球,现从甲、乙两个盒内各任取2个球. (Ⅰ)求取出的4个球均为黑球的概率; (Ⅱ)求取出的4个球中恰有1个红球的概率; (Ⅲ)设为取出的4个球中红球的个数,求的分布列和数学期望.