已知动点到点的距离等于点到直线的距离,点的轨迹为.(Ⅰ)求轨迹的方程;(Ⅱ)设为直线上的点,过点作曲线的两条切线,,(ⅰ)当点时,求直线的方程;(ⅱ)当点在直线上移动时,求的最小值.
已知矩阵,,计算.
如图,⊙为四边形的外接圆,且,是延长线上一点,直线与圆相切.求证:.
已知函数,其中m,a均为实数. (1)求的极值; (2)设,若对任意的,恒成立,求的最小值; (3)设,若对任意给定的,在区间上总存在,使得 成立,求的取值范围.
设各项均为正数的数列的前n项和为Sn,已知,且对一切都成立.(1)若λ=1,求数列的通项公式; (2)求λ的值,使数列是等差数列.
如图,在平面直角坐标系中,已知,,是椭圆上不同的三点,,,在第三象限,线段的中点在直线上.(1)求椭圆的标准方程;(2)求点C的坐标;(3)设动点在椭圆上(异于点,,)且直线PB,PC分别交直线OA于,两点,证明为定值并求出该定值.