(本小题满分14分)设△ABC三个内角A、B、C所对的边分别为a,b,c. 已知C=,acosA=bcosB.(1)求角A的大小;(2)如图,在△ABC的外角∠ACD内取一点P,使得PC=2.过点P分别作直线CA、CD的垂线PM、PN,垂足分别是M、N.设∠PCA=α,求PM+PN的最大值及此时α的取值.
设两个非零向量、不共线(1)若,求证:A、B、D三点共线;(2)试确定实数k的值,使和共线.
已知函数(1)求的定义域及最小正周期;(2)求的单调递减区间.
设不等式的解集为.(I)求集合;(II)若,∈,试比较与的大小.
在直接坐标系中,直线的方程为,曲线的参数方程为(为参数).(I)已知在极坐标(与直角坐标系取相同的长度单位,且以原点为极点,以轴正半轴为极轴)中,点的极坐标为(4,),判断点与直线的位置关系;(II)设点是曲线上的一个动点,求它到直线的距离的最小值.
如图,圆与圆内切于点,其半径分别为与,圆的弦交圆于点(不在上),求证:为定值。