(本小题满分8分)要制作一个容积为16立方米,高为1米的无盖长方体容器,已知容器的底面造价是每平方米20元,侧面造价是每平方米10元,问如何设计才能使该容器的总造价最低,最低总造价是多少元?
已知sin(+)=-,cos()=,且<<<,求sin2.
设关于x的方程sinx+cosx+a=0在(0, 2π)内有相异二解α、β.(Ⅰ)求α的取值范围; (Ⅱ)求tan(α+β)的值.
(已知求的值.
探究函数的最小值,并确定取得最小值时x的值。列表如下:
请观察表中y值随x值变化的特点,完成以下的问题。 (1)函数在区间(0,2)上递减,在区间 上递增。当 时, 。 (2)证明:函数在区间(0,2)递减。 (3)思考:函数时有最值吗?是最大值还是最小值?此时x为何值?(直接回答结果,不需证明)
二次函数的图象经过三点。(1)求函数的解析式;(2)求函数在区间上的最大值和最小值。