如图,已知二次函数的图象的顶点为A,且与y轴交于点C.(1)求点A与点C的坐标;(2)若将此函数的图象沿z轴向右平移1个单位,再沿y轴向下平移3个单位,请直接写出平移后图象所对应的函数关系式及点C的对应点的坐标;(3)若A(m,),B(m+1,)两点都在此函数的图象上,试比较与的大小.
如图,点D是△ABC的BA边的延长线上一点,有以下三项:AB=AC,∠1=∠2,AE∥BC,请把其中两项作为条件,填入下面的“已知”栏中,另一项作为结论,填入下面的“求证”栏中,使之组成一个真命题,并写出证明过程.已知: ,求证: 。证明:
如图,在△ABC中, ∠BAC是钝角,按要求完成下列画图.(不写作法,保留作图痕迹)①用尺规作∠BAC的角平分线AE. ②用三角板作AC边上的高BD.③用尺规作AC边上的垂直平分线MN.
解不等式2+≥,并把它的解集表示在数轴上.
两个大小不同的等腰三角形三角板如图1所示放置,图2是由它抽象出的几 何图形,B、C、E在同一条直线上,连接DC.(1)请找出图2中的全等三角形,并给予证明(说明:结论不得含有未标字母);(2)猜想BC与CD之间位置关系,并证明你的结论.
如图,点D,E在△ABC的边BC上,连接AD,AE.①AB=AC;②AD=AE;③BD=CE.以此三个等式中的两个作为命题的题设,另一个作为命题的结论,构成三个命题:①②⇒③:①③⇒②;②③⇒①(1)以上三个命题是真命题的为 (直接作答);(2)请选择一个真命题进行证明(先写出所选命题,然后证明).