在平面直角坐标系中,抛物线与x轴的两个交点分别为A(-3,0),B(1,0),过顶点C作CH⊥x轴于点H.(1)a= ,b= ,顶点C的坐标为 .(2)在轴上是否存在点D,使得△ACD是以AC为斜边的直角三角形?若存在,求出点D的坐标;若不存在,说明理由.(3)若点P为x轴上方的抛物线上一动点(点P与顶点C不重合),PQ⊥AC于点Q,当△PCQ与△ACH相似时,求点P的坐标.
如图,为上一点,点在直径的延长线上,.(1)求证:是的切线;(2)过点作的切线交的延长线于点,若BC=4,tan∠ABD=求的长.
中山市某施工队负责修建1800米的绿道.为了尽量减少施工对周边环境的影响,该队提高了施工效率,实际工作效率比原计划每天提高了20%,结果提前两天完成.求实际平均每天修绿道的长度?
“校园手机”现象越来越受到社会的关注,小记者刘凯随机调查了某校若干学生和家长对中学生带手机现象的看法,制作了如下的统计图:图1图2(1)求这次调查的总人数,并补全图1; (2)求图2中表示家长“赞成”的圆心角的度数;(3)针对随机调查的情况,刘凯决定从初三一班表示赞成的3位家长中随机选择2位进行深入调查,其中包含小亮和小丁的家长,请你利用树状图或列表的方法,求出小亮和小丁的家长被同时选中的概率.
如图,在边长均为1的小正方形网格纸中,△的顶点、、均在格点上,且是直角坐标系的原点,点在轴上.(1)以O为位似中心,将△放大,使得放大后的△与△对应线段的比为2∶1,画出△ .(所画△与△在原点两侧).(2)求出线段所在直线的函数关系式.
已知关于x的一元二次方程 (m -2)x2 + 2mx + m +3 =" 0" 有两个不相等的实数根.(1)求m的取值范围; (2)当m取满足条件的最大整数时,求方程的根.