(本题10分)已知△ABC为等边三角形,点D为直线BC上一动点(点D不与点B、点C重合).以AD为边作等边三角形ADE,连接CE.(1)如图,当点D在边BC上时.①求证:△ABD≌△ACE;②直接判断结论BC=DC+CE是否成立(不需证明);(2)、如图,当点D在边BC的延长线上时,其他条件不变,请写出BC、DC、CE之间存在的数量关系,并写出证明过程.
(本题10分)已知:如图,锐角△ABC的两条高BE、CD相交于点O,且OB=OC,(1)求证:△ABC是等腰三角形;(2)判断点O是否在∠BAC的角平分线上,并说明理由.
(本题10分)如图:AC=DF,AD=BE,BC=EF.求证:∠C=∠F.
(本题10分)求下列各式中的x(1)9x2-64=0(2)125x3+27=0
如图,已知一条直线过点,且与抛物线交于A,B两点,其中点A的横坐标是.(1)求这条直线的函数关系式及点B的坐标;(2)在x轴上是否存在点C,使得△ABC是直角三角形?若存在,求出点C的坐标;若不存在,请说明理由;(3) 过线段AB上一点P,作PM //x轴,交抛物线于点M,点M在第一象限,点N,当点M的横坐标为何值时,的长度最大?最大值是多少?
如图,在平面直角坐标系xOy中,将抛物线的对称轴绕着点P(,2)顺时针旋转45°后与该抛物线交于A、B两点,点Q是该抛物线上的一点.(1)求直线AB的函数表达式;(2)如图①,若点Q在直线AB的下方,求点Q到直线AB的距离的最大值;(3)如图②,若点Q在y轴左侧,且点T(0,t)(t<2)是直线PO上一点,当以P、B、Q为顶点的三角形与△PAT相似时,求所有满足条件的t的值.