选修4-1:几何证明选讲(本小题满分10分)如下图,AB、CD是圆的两条平行弦,BE//AC,BE交CD于E、交圆于F,过A点的切线交DC的延长线于P,PC=ED=1,PA=2.(1)求AC的长;(2)求证:BE = EF.
已知椭圆:. (1)椭圆的短轴端点分别为(如图),直线分别与椭圆交于两点,其中点满足,且. ①证明直线与轴交点的位置与无关; ②若∆面积是∆面积的5倍,求的值; (2)若圆:.是过点的两条互相垂直的直线,其中交圆于、两点,交椭圆于另一点.求面积取最大值时直线的方程.
某校同学设计一个如图所示的“蝴蝶形图案(阴影区域)”,其中、是过抛物线焦点的两条弦,且其焦点,,点为轴上一点,记,其中为锐角. (1)求抛物线方程; (2)如果使“蝴蝶形图案”的面积最小,求的大小?
已知向量,,其中.函数在区间上有最大值为4,设. (1)求实数的值; (2)若不等式在上恒成立,求实数的取值范围.
已知正方体的棱长为. (1)求异面直线与所成角的大小; (2)求四棱锥的体积.
已知函数是偶函数。 (1)求的值; (2)设函数,其中实数。若函数与的图象有且只有一个交点,求实数的取值范围。