如图,一简单组合体的一个面ABC内接于圆O,AB是圆O的直径,四边形DCBE为平行四边形,且DC平面ABC.(1)证明:平面ACD平面;(2)若,,,试求该简单组合体的体积V.
已知数列的前项和为,向量,,满足条件,且. (1)求数列的通项公式; (2)设函数,数列满足条件, ①求数列的通项公式; ②设,求数列的前和.
如图,一简单几何体的一个面内接于圆,分别是的中点,是圆的直径,四边形为平行四边形,且平面. (1)求证:平面; (2)若AC=BC=BE=2,求二面角O-CE-B的余弦值.
在2014年11月4日宜宾市举办的四川省第十四届少数民族传统体育运动会的餐饮点上,某种茶饮料一天的销售量与该天的日平均气温(单位:℃)有关,若日平均气温不超过15 ℃,则日销售量为100瓶;若日平均气温超过15℃但不超过20 ℃,则日销售量为150 瓶;若日平均气温超过20 ℃,则日销售量为200瓶.据宜宾市气象部门预测,该地区在运动会期间每一天日平均气温不超过15 ℃,超过15 ℃但不超过20 ℃,超过20 ℃这三种情况发生的概率分别为,又知P1,P2为方程5x2-3x+a=0的两根,且. (1)求P1,P2,P3的值; (2)记ξ表示该茶饮料在运动会期间任意两天的销售量总和(单位:瓶),求的分布列及数学期望.
已知函数,且周期为. (1)求的值; (2)当[]时,求的最大值及取得最大值时的值.
(本小题满分14分)设和是函数的两个极值点,其中,. (1)若曲线在点处的切线垂直于轴,求实数的值; (2)求的取值范围; (3)若,求的最大值(是自然对数的底数).