(本小题满分13分,(1)小问7分,(2)小问6分)已知函数在处取得最大值3,其相邻两条对称轴间的距离为.(1)求的解析式;(2)若,求的取值范围.
在面积为1的△PMN中,tan∠M=,tan∠N=-2,建立适当坐标系,求出以MN为焦点且过P点的椭圆方程.
方程=1表示焦点在y轴上的椭圆,求实数m的取值范围.
已知椭圆的中心在原点,且经过点P(3,0),a=3b,求椭圆的标准方程.
椭圆的中心在原点,对称轴为坐标轴,椭圆短轴的一个顶点B与两个焦点F1、F2组成的三角形的周长是4+2,且∠F1BF2=,求椭圆的方程.
△ABC的两个顶点A、B的坐标分别是(-5,0)、(5,0),边AC、BC所在直线的斜率之积为-,求顶点C的轨迹.