(本小题满分12分)右图为某校语言类专业N名毕业生的综合测评成绩(百分制)分布直方图,已知80~90分数段的学员数为21人(I)求该专业毕业总人数N和90~95分数段内的人数;(II)现欲将90~95分数段内的名毕业生分配往甲、乙、丙三所学校,若向学校甲分配两名毕业生,且其中至少有一名男生的概率为,求名毕业生中男女各几人(男女人数均至少两人)?(III)在(II)的结论下,设随机变量表示n名毕业生中分配往乙学校的三名学生中男生的人数,求的分布列和数学期望.
选修4-1:几何证明选讲 如图,P是O外一点,PA是切线,A为切点,割线PBC与O相交于点B,C,PC=2PA,D为PC的中点,AD的延长线交O于点E. 证明:(1)BE=EC; (2)ADDE=2.
已知函数=. (1)讨论的单调性; (2)设,当时,,求的最大值; (3)已知,估计ln2的近似值(精确到0.001)
设,分别是椭圆的左右焦点,M是C上一点且与x轴垂直,直线与C的另一个交点为N. (1)若直线MN的斜率为,求C的离心率; (2)若直线MN在y轴上的截距为2,且,求a,b.
如图,四棱锥P-ABCD中,底面ABCD为矩形,PA⊥平面ABCD,E为PD的中点. (1)证明:PB∥平面AEC; (2)设二面角D-AE-C为60°,AP=1,AD=,求三棱锥E-ACD的体积.
某公司为了解用户对其产品的满意度,从,两地区分别随机调查了20个用户,得到用户对产品的满意度评分如下: (Ⅰ)根据两组数据完成两地区用户满意度评分的茎叶图,并通过茎叶图比较两地区满意度评分的平均值及分散程度(不要求计算出具体值,得出结论即可); (Ⅱ)根据用户满意度评分,将用户的满意度从低到高分为三个等级:
记时间C:“A地区用户的满意度等级高于B地区用户的满意度等级”.假设两地区用户的评价结果相互独立.根据所给数据,以事件发生的频率作为相应事件发生的概率,求C的概率.