(本小题满分16分)己知函数(1)若,求函数 的单调递减区间;(2)若关于x的不等式 恒成立,求整数 a的最小值:(3)若 ,正实数 满足 ,证明:
若 a > 0 , b > 0 且 1 a + 1 b = a b .
(I)求 a 3 + b 3 的最小值; (II)是否存在 a , b ,使得 2 a + 3 b = 6 ?并说明理由.
已知曲线 C: x2 4 + y2 9 =1 ,直线 l: x = 2 + t y = 2 - t (t为参数) (1)写出曲线 C 的参数方程,直线 l 的普通方程;
(2)过曲线 C 上任意一点 P 作与 l 夹角为30°的直线,交 l 于点A,求 P A 的最大值与最小值.
如图,四边形是的内接四边形,的延长线与的延长线交于点,且. (I)证明:; (II)设不是的直径,的中点为,且,证明:为等边三角形.
设函数 f x =alnx+ 1 - a 2 x2-bx a ≠ 1 ,曲线 y=f x 在点 1 , f 1 处的切线斜率为0 求 b ;若存在 x 0 ≥1 使得 f x 0 < a a - 1 ,求 a 的取值范围。
已知点 P 2 , 2 ,圆 C : x 2 + y 2 - 8 y = 0 ,过点 P 的动直线 l 与圆 C 交于 A , B 两点,线段 A B 的中点为 M , O 为坐标原点. (1)求 M 的轨迹方程 (2)当 O P = O M 时,求 l 的方程及 ∆ P O M 的面积