如图,点B在的直径AC的延长线上,点D在上,AD=DB,∠B=30°,若的半径为4.(1)求证:BD是的切线;(2)求CB的长.
其中
如图,在平面直角坐标系中,直角梯形的边落在轴的正半轴上,且∥,,=4,=6,=8.正方形的两边分别落在坐标轴上,且它的面积等于直角梯形面积。将正方形沿轴的正半轴平行移动,设它与直角梯形的重叠部分面积为。 (1)分析与计算: 求正方形的边长; (2)操作与求解: ①正方形平行移动过程中,通过操作、观察,试判断(>0)的变化情况是 ;
②当正方形顶点移动到点时,求的值; (3)探究与归纳:
设正方形的顶点向右移动的距离为,求重叠部分面积与的函数关系式。
已知抛物线与x轴交于两点、,与y轴交于点C,AB=6.(1)求抛物线和直线BC的解析式.(2)在给定的直角坐标系中,画出抛物线和直线BC.(3)若⊙P过A、B、C三点,求⊙P的半径.(4)抛物线上是否存在点M,过点M作轴于点N,使被直线BC分成面积比为的两部分?若存在,请求出点M的坐标;若不存在,请说明理由.
某土产公司组织20辆汽车装运甲、乙、丙三种土特产共120吨去外地销售.按计划20辆车都要装运,每辆汽车只能装运同一种圭特产,且必须装满.根据下表提供的信息,解答以下问题:
(1)设装运甲种土特产的车辆数为,装运乙种土特产的车辆数为,求与之间的函数关系式.(2)如果装运每辆土特产的车辆都不少于3辆,那么车辆的安排方案有几种?并写出每种安排方案.(3)若要使此次销售获利最大,应采用(2)中哪种安排方案?并求出最大利润的值.