已知y与x-3成正比例函数,且当x=2时,y=-3.(1)求y与x之间的函数关系式;(2)求当x=1时,y的值.(3)求当y=-6时,x的值.
如图,△ABC是直角三角形,且∠ABC=90°,四边形BCDE是平行四边形,E为AC中点,BD平分∠ABC,点F在AB上,且BF=BC.求证:(1)DF=AE;(2)DF⊥AC.
如图1,在△ABC中,∠ACB=90°,AC=BC,∠EAC=90°,点M为射线AE上任意一点(不与A重合),连接CM,将线段CM绕点C按顺时针方向旋转90°得到线段CN,直线NB分别交直线CM、射线AE于点F、D. (1)直接写出∠NDE的度数; (2)如图2、图3,当∠EAC为锐角或钝角时,其他条件不变,(1)中的结论是否发生变化?如果不变,选取其中一种情况加以证明;如果变化,请说明理由; (3)如图4,若∠EAC=15°,∠ACM=60°,直线CM与AB交于G,BD= ,其他条件不变,求线段AM的长.
(1)如图,在矩形ABCD中,BF=CE,求证:AE=DF;(2)如图,在圆内接四边形ABCD中,O为圆心,∠BOD=160°,求∠BCD的度数.
如图,在△ABC中,AB=AC,∠DAC是△ABC的一个外角.实践与操作:根据要求尺规作图,并在图中标明相应字母(保留作图痕迹,不写作法).(1)作∠DAC的平分线AM;(2)作线段AC的垂直平分线,与AM交于点F,与BC边交于点E,连接AE、CF.猜想并证明:判断四边形AECF的形状并加以证明.
如图1是一把折叠椅子,图2是椅子完全打开支稳后的侧面示意图,其中AD和BC表示两根较粗的钢管,EG表示座板平面,EG和BC相交于点F,MN表示地面所在的直线,EG∥MN,EG距MN的高度为42cm,AB=43cm,CF=42cm,∠DBA=60°,∠DAB=80°.求两根较粗钢管AD和BC的长.(结果精确到0.1cm.参考数据:sin80°≈0.98,cos80°≈0.17,tan80°≈5.67,sin60°≈0.87,cos60°≈0.5,tan60°≈1.73)