在一个不透明的口袋里装有分别标有数字1、2、3、4四个小球,小球除数字不同外,其它无任何区别,每次试验先搅拌均匀.(1)若从中任取一球,球上的数字为偶数的概率是多少?(2)若设计一种游戏方案:从中任取一球(不放回),再从中任取一球,两球上的数字之和为偶数则甲胜,否则乙胜.该游戏对甲、乙双方公平吗?请说明理由.
如图,点C是⊙O的直径AB延长线上的一点,且有BO=BD=BC. (1)求证:CD是⊙O的切线; (2)若半径OB=2,求AD的长.
如图,已知二次函数y=x2+bx+c过点A(1,0),C(0,﹣3) (1)求此二次函数的解析式; (2)在抛物线上存在一点P使△ABP的面积为10,请直接写出点P的坐标.
如图,抛物线y=x2+bx+c过点A(﹣4,﹣3),与y轴交于点B,对称轴是x=﹣3,请解答下列问题: (1)求抛物线的解析式. (2)若和x轴平行的直线与抛物线交于C,D两点,点C在对称轴左侧,且CD=8,求△BCD的面积. 注:抛物线y=ax2+bx+c(a≠0)的对称轴是.
如图,在平面直角坐标系中,直线AB分别与x轴,y轴相交于A,B两点,OA,OB的长分别是方程x2﹣14x+48=0的两根,且OA<OB. (1)求点A,B的坐标. (2)过点A作直线AC交y轴于点C,∠1是直线AC与x轴相交所成的锐角,sin∠1=,点D在线段CA的延长线上,且AD=AB,若反比例函数的图象经过点D,求k的值. (3)在(2)的条件下,点M在射线AD上,平面内是否存在点N,使以A,B,M,N为顶点的四边形是邻边之比为1:2的矩形?若存在,请直接写出点N的坐标;若不存在,请说明理由.
博雅书店准备购进甲、乙两种图书共100本,购书款不高于2224元,预计这100本图书全部售完的利润不低于1100元,两种图书的进价、售价如下表所示:
请解答下列问题: (1)有哪几种进书方案? (2)在这批图书全部售出的条件下,(1)中的哪种方案利润最大?最大利润是多少? (3)博雅书店计划用(2)中的最大利润购买单价分别为72元、96元的排球、篮球捐给贫困山区的学校,那么在钱恰好用尽的情况下,最多可以购买排球和篮球共多少个?请你直接写出答案.