已知数列的前项和为,且,N*(1)求数列的通项公式;(2)已知(N*),记(且),是否存在这样的常数,使得数列是常数列,若存在,求出的值;若不存在,请说明理由.(3)若数列,对于任意的正整数,均有成立,求证:数列是等差数列;
如图,已知抛物线,焦点为,顶点为,点在抛物线上移动,是的中点,是的中点,求点的轨迹方程.
已知:,:.若“”是“”的充分不必要条件,求实数的取值范围.
已知椭圆的离心率为,椭圆短轴的一个端点与两个焦(Ⅰ)求椭圆的方程;(Ⅱ)已知动直线与椭圆相交于、两点. ①若线段中点的横坐标为,求斜率的值;②若点,求证:为定值.
已知:函数,其中.(Ⅰ)若是的极值点,求的值;(Ⅱ)求的单调区间;(Ⅲ)若在上的最大值是,求的取值范围.
已知:数列的前项和为,且满足,.(Ⅰ)求:,的值;(Ⅱ)求:数列的通项公式;(Ⅲ)若数列的前项和为,且满足,求数列的前项和.