如图是一个半圆形湖面景点的平面示意图.已知为直径,且km,为圆心,为圆周上靠近 的一点,为圆周上靠近 的一点,且∥.现在准备从经过到建造一条观光路线,其中到是圆弧,到是线段.设,观光路线总长为.(1)求关于的函数解析式,并指出该函数的定义域;(2)求观光路线总长的最大值.
(本题共10分)(1)计算: (2)解关于的不等式:
(本小题满分为10分) 已知中心在原点,焦点在轴上的椭圆C的离心率为,且经过点M(1,),过点P(2,1)的直线与椭圆C相交于不同的两点A,B. (Ⅰ)求椭圆C的方程; (Ⅱ)是否存在直线,满足?若存在,求出直线的方程;若不存在,请说明理由.
(本小题满分为10分) 设等差数列的公差为,前项和为,等比数列的公比为.已知,,,. (Ⅰ)求数列,的通项公式; (Ⅱ)当时,记,求数列的前项和.
(本小题满分为10分) 已知点P(-2,-3)和以点Q为圆心的圆。 (Ⅰ)求以PQ为直径的圆的方程; (Ⅱ)设⊙与⊙Q相交于点A、B,求直线AB的一般式方程。 (Ⅲ)设直线:与圆Q相交于点C、D,求截得的弦CD的长度最短时的值。
(本小题满分为10分) 求满足下列条件的直线的一般式方程: (Ⅰ)经过两条直线和的交点,且垂直于直线 (Ⅱ)与两条平行直线及等距离