(本小题满分12分)某城市有东西南北四个进入城区主干道的入口,在早高峰时间段,时常发生交通拥堵现象,交警部门统计11月份30天内的拥堵天数,东西南北四个主干道入口的拥堵天数分别是18天,15天,9天,15天.假设每个入口发生拥堵现象互相独立,视频率为概率.(1)求该城市一天中早高峰时间段恰有三个入口发生拥堵的概率;(2)设表示一天中早高峰时间段发生拥堵的主干道入口个数,求的分布列和数学期望.
(1)已知x<,求函数y=4x-2+的最大值; (2)已知x>0,y>0且=1,求x+y的最小值.
已知,若函数在上的最大值为,最小值为. (1)求的表达式; (2)求的表达式并说出其最值.
已知函数有如下性质:如果常数,那么该函数上是减函数,在上是增函数. (1)已知,,求函数的最大值和最小值. (2)已知,,利用上述性质,求函数的单调区间和值域.
设命题:方程无实数根;命题:函数的定义域是.如果命题为真命题,求实数的取值范围.
已知 (1)求当时,函数的表达式; (2)作出函数的示意图象,并指出其单调区间.