已知集合的元素全为实数,且满足:若,则。(1)若,求出中其它所有元素;(2)0是不是集合中的元素?请你设计一个实数,再求出中的所有元素?(3)根据(1)(2),你能得出什么结论。
在斜三棱柱中,侧面平面,,为中点. (1)求证:; (2)求证:平面; (3)若,,求三棱锥的体积.
已知圆经过坐标原点和点,且圆心在轴上. (1)求圆的方程; (2)设直线经过点,且与圆相交所得弦长为,求直线的方程.
如图,在四棱锥中,底面为矩形,平面,,为中点. (1)证明://平面; (2)证明:平面.
已知为椭圆上的三个点,为坐标原点. (1)若所在的直线方程为,求的长; (2)设为线段上一点,且,当中点恰为点时,判断的面积是否为常数,并说明理由.
已知抛物线,点,过的直线交抛物线于两点. (1)若线段中点的横坐标等于,求直线的斜率; (2)设点关于轴的对称点为,求证:直线过定点.