如图,在平面直角坐标系中,抛物线y=ax2+bx+6经过点A(-3,0)和点B(2,0).直线y=h(h为常数,且0<h<6)与BC交于点D,与y轴交于点E,与AC交于点F,与抛物线在第二象限交于点G.(1)求抛物线的解析式;(2)连接BE,求h为何值时,△BDE的面积最大;(3)已知一定点M(-2,0).问:是否存在这样的直线y=h,使△OMF是等腰三角形?若存在,请求出h的值和点G的坐标;若不存在,请说明理由.
(本题8分)某运动品牌对第一季度A、B两款运动鞋的销售情况进行统计,两款运动鞋的销售量及总销售额如图所示: (1)一月份B款运动鞋的销售量是A款的,则一月份B款运动鞋销售了多少双? (2)第一季度这两款运动鞋的销售单价保持不变,求三月份的总销售额(销售额=销售单价×销售量); (3)结合第一季度的销售情况,请你对这两款运动鞋的进货、销售等方面提出一条建议.
(本题6分)如图,已知△ABC,∠C=Rt∠,AC<BC,D为BC上一点,且到A,B两点的距离相等. (1)用直尺和圆规,作出点D的位置(不写作法,保留作图痕迹); (2)连结AD,若∠B=37°,求∠CAD的度数.
(本题6分)先化简,再求值:,其中.
如图,反比例函数的图象经过点(-1,),点A是该图象第一象限分支上的动点,连结AO并延长交另一支于点B,以AB为斜边作等腰直角三角形ABC,顶点C在第四象限,AC与轴交于点P,连结BP. (1)的值为 (2)在点A运动过程中,当BP平分∠ABC时,点C的坐标是
(本题共12分)定义:有一组对角相等而另一组对角不相等的凸四边形叫做“等对角四边形”. (1)已知:如图1,四边形是“等对角四边形”,,,.求,的度数. (2)在探究“等对角四边形”性质时: ① 小红画了一个“等对角四边形”(如图2),其中,,此时她发现成立.请你证明此结论. ② 由此小红猜想:“对于任意‘等对角四边形’,当一组邻边相等时,另一组邻边也相等”.你认为她的猜想正确吗?若正确,请证明;若不正确,请举出反例. (3)已知:在“等对角四边形”中,,,,.求对角线的长.