某商场试销一种成本为每件60元的服装,规定试销期间销售单价不低于成本单价,且获利不得高于45%,经试销发现,销售量(件)与销售单价(元)符合一次函数,且时,;时,.(1)求一次函数的表达式;(2)若该商场获得利润为元,试写出利润与销售单价之间的关系式;销售单价定为多少元时,商场可获得最大利润,最大利润是多少元?(3)若该商场获得利润不低于500元,试确定销售单价的范围.
先化简,再求值: ( 1 x - y + 1 x + y ) ÷ 1 x 2 + xy .其中 x = 2 , y = 1 .
解方程: x - 3 2 + x - 1 3 = 4 .
如图,在平面直角坐标系中,抛物线 y =﹣ x 2 + bx + c 的图象与坐标轴相交于 A、 B、 C三点,其中 A点坐标为(3,0), B点坐标为(﹣1,0),连接 AC、 BC.动点 P从点 A出发,在线段 AC上以每秒 2 个单位长度向点 C做匀速运动;同时,动点 Q从点 B出发,在线段 BA上以每秒1个单位长度向点 A做匀速运动,当其中一点到达终点时,另一点随之停止运动,连接 PQ,设运动时间为 t秒.
(1)求 b、 c的值.
(2)在 P、 Q运动的过程中,当 t为何值时,四边形 BCPQ的面积最小,最小值为多少?
(3)在线段 AC上方的抛物线上是否存在点 M,使△ MPQ是以点 P为直角顶点的等腰直角三角形?若存在,请求出点 M的坐标;若不存在,请说明理由.
如图, AB是⊙ O的直径,点 F在⊙ O上,∠ BAF的平分线 AE交⊙ O于点 E,过点 E作 ED ⊥ AF ,交 AF的延长线于点 D,延长 DE、 AB相交于点 C.
(1)求证: CD是⊙ O的切线;
(2)若⊙ O的半径为5, tan ∠ EAD = 1 2 ,求 BC的长.
如图是由边长为1的小等边三角形构成的网格,每个小等边三角形的顶点为格点,线段AB的端点都在格点上.要求以AB为边画一个平行四边形,且另外两个顶点在格点上.请在下面的网格图中画出4种不同的设计图形