如图甲,Rt△PMN中,∠P=90°,PM=PN,MN=8cm,矩形ABCD的长和宽分别为8cm和2cm,C点和M点重合,BC和MN在一条直线上,令Rt△PMN不动,矩形ABCD沿MN所在直线向右以每秒1cm的速度移动(如图乙),直到C点与N点重合为止.设移动x秒后,矩形ABCD与△PMN重叠部分的面积为ycm2.求y与x之间的函数关系式.
如图,在矩形ABCD中,AB=6cm,BC=8cm.如果点E由点B出发沿BC方 向向点C匀速运动,同时点F由点D出发沿DA方向向点A匀速运动,它们的速度分别为2cm/s和1cm/s.FQ⊥BC,分别交AC、BC于点P和Q,设运动时间为t(s)(0<t<4). (1)连结EF、DQ,若四边形EQDF为平行四边形,求t的值; (2)连结EP,设△EPC的面积为ycm2,求y与t的函数关系式,并求y的最大值;
如图,AB为半圆O的直径,点C在半圆上,CD⊥AB于点D, 连结BC,作∠BCP=∠BCD,CP交AB延长线于点P. (1)求证:PC是半圆O的切线; (2)求证:PC2=PB•PA; (3)若PC=2,tan∠BCD=,求的长.
如图,抛物线与轴交于A(﹣2,0),B(6,0)两点. (1)求该抛物线的解析式; (2)求该抛物线的对称轴以及顶点坐标; (3)点P为y轴右侧抛物线上一个动点,若S△PAB=32, 求出此时P点的坐标.
如图,正方形ABCD中,点F在AD上,点E在AB的延长线上,∠FCE=90°. (1)求证:△CDF≌△CBE. (2)若CD=8.EF=10.求∠DCF的余弦值.
在一个不透明的布袋里装有4个标有1,2,3,4的小球,它们的形状、大 小、质地完全相同,李晓同学从布袋里随机取出一个小球,记下数字为x,张丹同学在剩下的3个 小球中随机取出一个小球,记下数字为y,这样确定了点Q的坐标(x,y). (1)画树状图或列表,写出点Q所有可能的坐标; (2)求点Q(x,y)在函数y=﹣x+6图象上的概率.