如图甲,Rt△PMN中,∠P=90°,PM=PN,MN=8cm,矩形ABCD的长和宽分别为8cm和2cm,C点和M点重合,BC和MN在一条直线上,令Rt△PMN不动,矩形ABCD沿MN所在直线向右以每秒1cm的速度移动(如图乙),直到C点与N点重合为止.设移动x秒后,矩形ABCD与△PMN重叠部分的面积为ycm2.求y与x之间的函数关系式.
物美商场于今年年初以每件25元的进价购进一批商品.当商品售价为40元时,一月份销售256件.二、三月该商品十分畅销.销售量持续走高.在售价不变的基础上,三月份的销售量达到400件.设二、三这两个月月平均增长率不变. (1)求二、三这两个月的月平均增长率; (2)从四月份起,商场采用降价促销的方式回馈顾客,经调查发现,该商品每降价1元,销售量增加5件,当商品降价多少元时,商场获利4250元?
已知,如图,在△ABC中,D是BC边上的一点,E是AD的中点,过点A作BC的平行线交与BE的延长线于点F,且AF=DC,连结CF. (1)求证:四边形ADCF是平行四边形; (2)当AB与AC有何数量关系时,四边形ADCF为矩形,请说明理由.
某市篮球队到市一中选拔一名队员.教练对王亮和李刚两名同学进行5次3分投篮测试,每人每次投10个球,下图记录的是这两名同学5次投篮中所投中的个数. (1)请你根据图中的数据,填写下表;
(2)你认为谁的成绩比较稳定,为什么? (3)若你是教练,你打算选谁?简要说明理由.
解方程: (1)x2-3x+1=0; (2)x(x+3)-(2x+6)=0.
某工艺品厂的手工编织车间有工人20名,每人每天可编织5个座垫或4个挂毯.在这20名工人中,如果派x人编织座垫,其余的编织挂毯.已知每个座垫可获利16元,每个挂毯可获利24元. (1)写出该车间每天生产这两种工艺品所获得的利润y(元)与x(人)之间的函数关系式; (2)若使车间每天所获利润不小于1800元,最多安排多少人编织座垫?