如图,二次函数y=ax2+bx+c的图象的顶点C的坐标为(0,-2),交x轴于A、B两点,其中A(-1,0),直线l:x=m(m>1)与x轴交于D.(1)求二次函数的解析式和B的坐标;(2)在直线l上找点P(P在第一象限),使得以P、D、B为顶点的三角形与以B、C、O为顶点的三角形相似,求点P的坐标(用含m的代数式表示);(3)在(2)成立的条件下,在抛物线上是否存在第一象限内的点Q,使△BPQ是以P为直角顶点的等腰直角三角形?如果存在,请求出点Q的坐标;如果不存在,请说明理由.
如图,方格纸中每个小正方形的边长都是单位1,△ABC在平面直角坐标系中的位置如图所示.(1)将△ABC 绕点B顺时针方向旋转90o后得△A1BC1,画出△A1BC1,并直接写出点C1的坐标为 .(2)把△ABC以点C为位似中心同侧放大,使放大前后对应边长的比为1:2,画作出△A2B2C,并直接写出点B2的坐标为 .
已知双曲线的图象经过点A(-1,2).(1)求该反比例函数的解析式.(2)若B(b,m)、C(c,n)是该双曲线上的两个点,且b<c<0,判断m,n的大小关系.(3)判断关于x的一元二次方程的根的情况.
如图,直线与轴、轴分别交于点A、B,抛物线经过点A、B.求:(1)点A、B的坐标;(2)抛物线的函数表达式;(3)在抛物线对称轴上是否存在点P,使得以A、B、P为顶点的三角形为等腰三角形,若存在,求点P的坐标;若不存在,请说明理由.
如图,在△ABC中,AB=6cm,BC=12cm,∠B=90°.点P从点A开始沿AB边向点B以1cm/s的速度移动,点Q从点B开始沿BC边向点C以2cm/s的速度移动,如果P、Q分别从A、B同时出发,设移动时间为t(s).(1)当时,求△PBQ的面积;(2)当为多少时,四边形APQC的面积最小?最小面积是多少?(3)当为多少时,△PQB与△ABC相似.
如图,点A、B为6×6的网格中的格点,每个小正方形的边长都为1,其中A点的坐标为(0,4).(1)请直接写出B点的坐标;(2)若点C为6×6的网格中的格点,且∠ACB=90°,请求出符合条件的点C的坐标.