(本小题满分12分)已知点G是△ABC的重心,A(0,-1),B(0,1).在x轴上有一点M,满足,(若△ABC的顶点坐标为,则该三角形的重心坐标为.(1)求点C的轨迹E的方程;(2)若斜率为k的直线l与(1)中的曲线E交于不同的两点P、Q,且,试求斜率k的取值范围.
在锐角三角形中,角的对边为,已知,, (1)求; (2)若,求.
如图,由若干个小正方形组成的k层三角形图阵,第一层有1个小正方形,第二层有2个小正方形,依此类推,第k层有k个小正方形.除去最底下的一层,每个小正方形都放置在它下一层的两个小正方形之上.现对第k层的每个小正方形用数字进行标注,从左到右依次记为,其中(),其它小正方形标注的数字是它下面两个小正方形标注的数字之和,依此规律,记第一层的小正方形标注的数字为. (1)当k=4时,若要求为2的倍数,则有多少种不同的标注方法? (2)当k=11时,若要求为3的倍数,则有多少种不同的标注方法?
一位网民在网上光顾某网店,经过一番浏览后,对该店铺中的三种商品有购买意向.已知该网民购买种商品的概率为,购买种商品的概率为,购买种商品的概率为.假设该网民是否购买这三种商品相互独立. (1)求该网民至少购买2种商品的概率; (2)用随机变量表示该网民购买商品的种数,求的概率分布和数学期望.
设函数f(x)=+|x-a|(a>0). (1)证明:f(x)≥2; (2)若f(3)<5,求实数a的取值范围.
在直角坐标系xOy中,已知曲线的参数方程是,在以坐标原点O为极点,轴的正半轴为极轴的极坐标系中,曲线的极坐标方程是,求曲线与的交点在直角坐标系中的直角坐标.