(本小题满分12分)如图是某几何体的直观图与三视图的侧视图、俯视图.在直观图中,2BN=AE,M是ND的中点.侧视图是直角梯形,俯视图是等腰直角三角形,有关数据如图所示.(1)在答题纸上的虚线框内画出该几何体的正视图,并标上数据;(2)求证:EM∥平面ABC;(3)试问在边BC上是否存在点G,使GN⊥平面NED.若存在,确定点G的位置;若不存在,请说明理由.
已知△ABC的三个内角A、B、C所对的边分别为a,b, c,向量m=(1,1-sinA),n=(cosA,1),且m⊥n. (Ⅰ)求角A; (Ⅱ)若b+c=a,求sin(B+)的值.
已知集合U={x|>-2且x∈Z},集合A={x|ax-1=0},集合B={x|-(a+3)x+2a+2=0),若CUA=B,求a的值.
已知中心在原点,焦点在轴上的椭圆,离心率,且经过抛物线的焦点. (1)求椭圆的标准方程; (2)若过点的直线(斜率不等于零)与椭圆交于不同的两点(在 之间),与面积之比为,求的取值范围.
已知函数的图象为曲线C。 (1)若曲线C上存在点P,使曲线C在P点处的切线与轴平行,求的关系; (2)若函数时取得极值,求此时的值; (3)在满足(2)的条件下,的取值范围。
已知数列是首项为,公比的等比数列,设,数列. (1)求数列的通项公式;(2)求数列的前n项和Sn.