如图,矩形中,,,、分别在线段和上,∥,将矩形沿折起,记折起后的矩形为,且平面平面.(Ⅰ)求证:∥平面;(Ⅱ)求四面体体积的最大值.
已知以点为圆心的圆经过点和,线段的垂直平分线交圆于点和,且. (1)求直线的方程; (2)求圆的方程.
如图,在四棱锥中,底面为直角梯形,,,底面,且,、分别为、的中点. (1)求证:平面; (2)求证:.
已知条件,条件,若是的充分条件,求实数的取值范围.
己知椭圆C:(a>b>0)的右焦点为F(1,0),点A(2,0)在椭圆C上,过F点的直线与椭圆C交于不同两点. (1)求椭圆C的方程; (2)设直线斜率为1,求线段的长; (3)设线段的垂直平分线交轴于点P(0,y0),求的取值范围.
如图,在三棱柱ABC-A1B1C1中,C1C⊥底面ABC,AC=BC=CC1=2,AC⊥BC,点D是AB的中点. (1)求证:AC1∥平面CDB1; (2)求四面体B1C1CD的体积.