如图,矩形中,,,、分别在线段和上,∥,将矩形沿折起,记折起后的矩形为,且平面平面.(Ⅰ)求证:∥平面;(Ⅱ)求四面体体积的最大值.
(本小题满分12分)已知集合,集合. (Ⅰ)若,求; (Ⅱ)若AB,求实数的取值范围.
已知函数f(x)=+其中a为实数 (1)求函数的最大值个 (2)若对于任意的非零实数a,不等式恒成立,求实数的取值范围。
(本小题满分12分) 已知单调递增的等比数列{an}满足:a2+a3+a4=28,且a3+2是a2,a4的等差中项。 (1)求数列{an}的通项公式; (2)若bn=,sn=b1+b2+┉+bn,对任意正整数n,sn+(n+m)an+1<0恒成立,试求m的取值范围。
(本小题满分12分) △ABC中,a,b,c分别是角A,B,C的对边,且有sin2C+cos(A+B)=0. (1),求△ABC的面积; (2)若的值.
(本小题满分12分) 求与轴x轴相切,圆心在直线3x-y=0上,且被直线x-y=0截下的弦长2的圆的方程