(本小题满分12分)已知圆C的圆心C在第一象限,且在直线上,该圆与轴相切,且被直线截得的弦长为,直线与圆C相交.(Ⅰ)求圆C的标准方程;(Ⅱ)求出直线所过的定点;当直线被圆所截得的弦长最短时,求直线的方程及最短的弦长。
曲线都是以原点O为对称中心、坐标轴为对称轴、离心率相等的椭圆.点M的坐标是(0,1),线段MN是曲线的短轴,并且是曲线的长轴 . 直线与曲线交于A,D两点(A在D的左侧),与曲线交于B,C两点(B在C的左侧). (1)当=,时,求椭圆的方程; (2)若,求的值.
如图所示的几何体是由以等边三角形ABC为底面的棱柱被平面DEF所截面得,已知FA⊥平面ABC,AB=2,BD=1,AF=2, CE=3,O为AB的中点. (1)求证:OC⊥DF; (2)求平面DEF与平面ABC相交所成锐二面角的大小; (3)求多面体ABC—FDE的体积V.
甲、乙、丙三人独立参加某企业的招聘考试,根据三人的专业知识、应试表现、工作经验等综合因素,三人被招聘的概率依次为用表示被招聘的人数。 (1)求三人中至少有一人被招聘的概率; (2)求随机变量的分布列和数学期望。
已知函数的一系列对应值如表:
(1)求的解析式; (2)若在中,,,(A为锐角),求的面积.
已知函数,(为实常数) (1)若,将写出分段函数的形式,并画出简图,指出其单调递减区间; (2)设在区间上的最小值为,求的表达式。