(本小题满分12分,(Ⅰ)小问4分,(Ⅱ)小问8分)设是角的终边上任意一点,其中,,并记.若定义,,.(Ⅰ)求证是一个定值,并求出这个定值;(Ⅱ)求函数的最小值.
设是椭圆的两个焦点,是椭圆上一点,若,证明:的面积只与椭圆的短轴长有关
从椭圆上一点向轴引垂线,垂足恰为椭圆的左焦点,为椭圆的右顶点,是椭圆的上顶点,且. ⑴求该椭圆的离心率. ⑵若该椭圆的准线方程是,求椭圆方程.
已知长方形ABCD, AB=2,BC=1.以AB的中点为原点建立如图8所示的平面直角坐标系. (Ⅰ)求以A、B为焦点,且过C、D两点的椭圆的标准方程; (Ⅱ)过点P(0,2)的直线交(Ⅰ)中椭圆于M,N两点,是否存在直线,使得以弦MN为直径的圆恰好过原点?若存在,求出直线的方程;若不存在,说明理由.
已知A、B分别是椭圆的左右两个焦点,O为坐标原点,点P)在椭圆上,线段PB与y轴的交点M为线段PB的中点。 (1)求椭圆的标准方程; (2)点C是椭圆上异于长轴端点的任意一点,对于△ABC,求的值。
已知椭圆与过点A(2,0),B(0,1)的直线l有且只有一个公共点T,且椭圆的离心率.求椭圆方程