已知函数(为常数)。(1)若是函数的一个极值点,求的值;(2)当时,试判断的单调性;(3)若对任意的 存在,使不等式恒成立,求实数的取值范围.
(本小题满分12分)已知函数.(I)求的单调区间;(II)求证:不等式恒成立.
(本小题满分12分)某大学毕业生参加一个公司的招聘考试,考试分笔试和面试两个环节,笔试有A、B两个题目,该学生答对A、B两题的概率分别为、,两题全部答对方可进入面试.面试要回答甲、乙两个问题,该学生答对这两个问题的概率均为,至少答对一题即可被聘用(假设每个环节的每个问题回答正确与否是相互独立的).(I)求该学生被公司聘用的概率;(II)设该学生答对题目的个数为,求的分布列和数学期望.
(本小题满分12分)如图,已知正三棱柱ABC—A1B1C1的底面边长是2,D是CC1的中点,直线AD与侧面BB1C1C所成的角是45°.(I)求二面角A—BD—C的大小;(II)求点C到平面ABD的距离.
(本小题满分10分)已知A,B,C是的三个内角,向量,,且.(I)求角A;(II)若的值.
(本小题满分10分) 已知函数f(x)= m·log2x + t的图象经过点A(4,1)、点B(16,3)及点C(Sn,n),其中Sn为数列{an}的前n项和,n∈N*. (Ⅰ)求Sn和an; (Ⅱ)设数列{bn}的前n项和为Tn , bn = f(an) – 1, 求不等式Tn£ bn的解集,n∈N*.