如图,在平面直角坐标系中,分别是椭圆的左、右焦点,顶点的坐标为,连结并延长交椭圆于点A,过点A作轴的垂线交椭圆于另一点C,连结.(1)若点C的坐标为,且,求椭圆的方程;(2)若求椭圆离心率e的值.
已知抛物线上有两动点及一个定点,为抛物线的焦点,且,成等差数列. (1)求证:线段的垂直平分线经过定点. (2)若,(为坐标原点),求此抛物线方程.
已知点在圆上移动,点在椭圆上移动,求的最大值.
已知椭圆长轴长,焦距,过焦点作一直线,交椭圆于两点.设,当取何值时,等于椭圆短轴的长?
是椭圆上异于长轴端点的任一点,,是椭圆的两个焦点,若,.求证:椭圆的离心率.
在中,已知.当动点满足条件时,求动点的轨迹方程.