(本小题满分12分)如图,已知点是离心率为的椭圆:上的一点,斜率为的直线交椭圆于、两点,且、、三点互不重合.(1)求椭圆的方程;(2)求证:直线,的斜率之和为定值.
已知函数.(1)求函数的最小正周期;(2)将函数的图象向下平移个单位,再将图象上各点的纵坐标伸长到原来的2倍(横坐标不变),得到函数的图象,求使成立的的取值集合.
在西非肆虐的“埃博拉病毒”的传播速度很快,这已经成为全球性的威胁.为了考察某种埃博拉病毒疫苗的效果,现随机抽取100只小鼠进行试验,得到如下列联表:
附表:
参照附表,在犯错误的概率不超过(填百分比)的前提下,认为“小动物是否被感染与有没有服用疫苗有关” .
选修4—5:不等式选讲已知函数,其中为实常数.(1)若函数的最小值为3,求的值;(2)若当时,不等式恒成立,求的取值范围.
选修4—4:坐标系与参数方程在直角坐标系中,已知曲线(为参数),在以为极点,轴正半轴为极轴的极坐标系中,曲线,曲线.(1)求曲线与的交点的直角坐标;(2)设点、分别为曲线、上的动点,求的最小值.
选修4—1:几何证明选讲如图,的半径垂直于直径,为上一点,的延长线交于点,过点的切线交的延长线于点.(1)求证:;(2)若的半径为,,求的长.