(本小题满分12分)某中学随机抽取部分高一学生调查其上学路上所需时间(单位:分钟),并将所得数据绘制成频率分布直方图(如图),其中上学路上所需时间的范围是,样本数据分组为,,,,.(1)求直方图中的值;(2)如果上学路上所需时间不少于小时的学生可申请在学校住宿,若招生名,请估计新生中有多少名学生可以申请住宿;(3)从学校的高一学生中任选4名学生,这4名学生中上学路上所需时间少于20分钟的人数记为,求的分布列和数学期望.(以直方图中的频率作为概率).
在长方体ABCD—A1B1C1D1中,,点E是棱AB上一点.且. (1)证明:; (2)若二面角D1—EC—B的大小为,求的值.
选修4—5:不等式选讲已知,,为正实数,若,求证:.
选修4—4:坐标系与参数方程在直角坐标系中以为极点,轴正半轴为极轴建立坐标系.圆,直线的极坐标方程分别为.
选修4—2:矩阵与变换 已知矩阵,若矩阵属于特征值6的一个特征向量为,属于特征值1的一个特征向量为.求矩阵的逆矩阵.
选修4—1:几何证明选讲如图,⊙为四边形的外接圆,且,是延长线上一点,直线与圆相切. 求证:.