(本小题满分12分)某中学随机抽取部分高一学生调查其上学路上所需时间(单位:分钟),并将所得数据绘制成频率分布直方图(如图),其中上学路上所需时间的范围是,样本数据分组为,,,,.(1)求直方图中的值;(2)如果上学路上所需时间不少于小时的学生可申请在学校住宿,若招生名,请估计新生中有多少名学生可以申请住宿;(3)从学校的高一学生中任选4名学生,这4名学生中上学路上所需时间少于20分钟的人数记为,求的分布列和数学期望.(以直方图中的频率作为概率).
(本小题满分10分)选修4-5:不等式选讲。设函数(Ⅰ)当时,求函数的最小值,并指出取得最小值时的值;(Ⅱ)若,讨论关于的方程=的解的个数.
(本小题满分10分)选修4-4:坐标系与参数方程已知极坐标系的极点在直角坐标系的原点处,极轴与轴的正半轴重合,曲线C1 (t为参数),曲线.(Ⅰ)写出C1与C2的普通方程;(Ⅱ)过坐标原点O做C1的垂线,垂足为,P为OA中点,当变化时,求P点的轨迹的参数方程,并指出它是什么曲线.
(本小题满分10分)选修4-1:几何证明选讲如图,是⊙O的直径 ,是⊙O的一条弦 ,的平分线交⊙O于点,⊥,且交的延长线于点,交于点.(1)求证:是⊙O的切线;(2)若,求的值.
(本小题满分12分)设, .(1)当时,求曲线在处的切线方程;(2)如果存在,,使得成立,求满足上述条件的最大整数; (3)当时,证明对于任意的,都有成立.
(本小题满分12分)已知椭圆过点,左、右焦点分别为,离心率为,经过的直线与圆心在轴上且经过点的圆恰好相切于点.(1)求椭圆及圆的方程;(2) 在直线上是否存在一点,使为以为底边的等腰三角形?若存在,求点的坐标,否则说明理由.