(本小题满分13分)如图,在四棱锥中,平面,底面是菱形,. (Ⅰ)求证:平面(Ⅱ)若求与所成角的余弦值;(Ⅲ)当平面与平面垂直时,求的长.
已知函数,,其中R. (Ⅰ)当a=1时判断的单调性; (Ⅱ)若在其定义域内为增函数,求正实数的取值范围; (Ⅲ)设函数,当时,若,,总有成立,求实数的取值范围.
已知数列 (Ⅰ)计算(Ⅱ)求数列的通项公式; (Ⅲ)用数学归纳法证明:
函数对任意的,都有,并且时,恒有. (Ⅰ)求证:在上是增函数; (Ⅱ)若,解不等式.
设集合, (Ⅰ)若,求实数的取值范围; (Ⅱ)当时,没有元素使得与同时成立,求实数的取值范围.
现有9名志愿者,其中通晓日语,通晓英语,通晓法语,从中选出通晓日语、英语、法语的志愿者各一名,组成一个小组. (Ⅰ)求至少一个被选中的概率; (Ⅱ)求不全被选中的概率.