2015年元旦联欢晚会某师生一块做游戏,数学老师制作了六张卡片放在盒子里,卡片上分别写着六个函数:分别写着六个函数:,.(1)现在取两张卡片,记事件A为“所得两个函数的奇偶性相同”,求事件A的概率;(2)从盒中不放回逐一抽取卡片,若取到一张卡片上的函数是奇函数则停止抽取,否则继续进行,记停止时抽取次数为,写出的分布列,并求其数学期望.
解不等式(x+2)2(x+3)(x-2)
已知:a>0 , b>0 , a+b=1,求(a+ )2+(b+ )2的最小值.
已知f(x) = ax + ,若求的范围.
已知A、B、C是直线l上的三点,O是直线l外一点,向量满足=[f(x)+2f′(1)]-ln(x+1) (Ⅰ)求函数y=f(x)的表达式; (Ⅱ)若x>0,证明:f(x)>; (Ⅲ)若不等式x2≤f(x2)+m2-2m-3对x∈[-1,1]恒成立,求实数m的取值范围.
已知数列中,,,其前项和满足.令. (Ⅰ)求数列的通项公式; (Ⅱ)若,求证:().