图中所示的图形是一个底面直径为20cm的装有一部分水的圆柱形玻璃杯,水中放着一个底面直径为6cm,高为20cm的一个小圆锥体铅锤,当铅锤从水中取出后,杯里的水将下降几厘米?
已知抛物线的焦点为F2,点F1与F2关于坐标原点对称,以F1,F2为焦点的椭圆C过点.(Ⅰ)求椭圆C的标准方程;(Ⅱ)设点,过点F2作直线与椭圆C交于A,B两点,且,若的取值范围.
已知数列满足,(且).(Ⅰ)求数列的通项公式;(Ⅱ)令,记数列的前项和为,若恒为一个与无关的常数,试求常数和.
如图,已知直角梯形所在的平面垂直于平面,,,.(Ⅰ)点是直线中点,证明平面;(Ⅱ)求平面与平面所成的锐二面角的余弦值.
袋中有8个大小相同的小球,其中1个黑球,3个白球,4个红球.(I)若从袋中一次摸出2个小球,求恰为异色球的概率;(II)若从袋中一次摸出3个小球,且3个球中,黑球与白球的个数都没有超过红球的个数,记此时红球的个数为,求的分布列及数学期望E.
已知向量,,设函数,.(Ⅰ)求的最小正周期与最大值;(Ⅱ)在中,分别是角的对边,若的面积为,求的值.