∠内有一点,把角分成两个角,且求△周长和面积最小值
已知数列满足:,且 (1)求通项公式 (2)设的前n项和为S n,问:是否存在正整数m、n,使得 若存在,请求出所有的符合条件的正整数对(m,n),若不存在,请说明理由.
如图 5,已知正方形ABCD在水平面上的正投影(投影线垂直于投影面)是四边形,其中A与A '重合,且BB'<DD'<CC'. (1)证明AD'//平面BB'C'C,并指出四边形AB'C'D’的形状; (2)如果四边形中AB'C'D’中,,正方形的边长为, 求平面ABCD与平面AB'C'D’所成的锐二面角的余弦值.
深圳市某校中学生篮球队假期集训,集训前共有6个篮球,其中3个是新球(即没有用过的球), 3 个是旧球(即至少用过一次的球).每次训练,都从中任意取出2 个球,用完后放回. (1)设第一次训练时取到的新球个数为,求的分布列和数学期望; (2)求第二次训练时恰好取到一个新球的概率.
已知函数 (1)求f(x)的最大值; (2)设△ABC中,角A、B的对边分别为a、b,若B=2A,且, 求角C的大小.
定义数列:,且对任意正整数,有. (1)求数列的通项公式与前项和; (2)问是否存在正整数,使得?若存在,则求出所有的正整数对;若不存在,则加以证明.