(本小题满分10分)选修4—4:坐标系与参数方程 在极坐标系中, O为极点, 半径为2的圆C的圆心的极坐标为.(1)求圆C的极坐标方程;(2)在以极点O为原点,以极轴为x轴正半轴建立的直角坐标系中,直线的参数方程为 (t为参数),直线与圆C相交于A,B两点,已知定点,求|MA|·|MB|。
函数(1)a=0时,求f(x)最小值;(2)若f(x)在是单调减函数,求a的取值范围.
(本小题满分12分)已知命题:,命题:().若“”是“”的必要而不充分条件,求实数的取值范围.
如图,单位圆(半径为1的圆)的圆心O为坐标原点,单位圆与y轴的正半轴交于点A,与钝角α的终边OB交于点B(xB,yB),设∠BAO=β.(1)用β表示α;(2)如果 sin β=,求点B(xB,yB)坐标;(3)求xB-yB的最小值.
如图,A,B是单位圆上的两个质点,点B坐标为(1,0),∠BOA=60°.质点A以1 rad/s的角速度按逆时针方向在单位圆上运动,质点B以1 rad/s的角速度按顺时针方向在单位圆上运动.(1)求经过1 s 后,∠BOA的弧度;(2)求质点A,B在单位圆上第一次相遇所用的时间.
求值:sin(-1 200°)·cos 1 290°+cos(-1 020°)·sin(-1 050°)+tan 945°.