为了缓解交通压力,某省在两个城市之间特修一条专用铁路,用一列火车作为公共交通车。已知每日来回趟数是每次拖挂车厢节数的一次函数,如果该列火车每次拖节车厢,每日能来回趟;如果每次拖节车厢,则每日能来回趟,火车每日每次拖挂车厢的节数是相同的,每节车厢满载时能载客人。(1)求出关于的函数;(2)该火车满载时每次拖挂多少节车厢才能使每日营运人数最多?并求出每天最多的营运人数?
已知,直线,为平面上的动点,过点作的垂线,垂足为点,且. (1)求动点的轨迹曲线的方程; (2)设动直线与曲线相切于点,且与直线相交于点,试探究:在坐标平面内是否存在一个定点,使得以为直径的圆恒过此定点?若存在,求出定点的坐标;若不存在,说明理由.
已知函数. (1)试判断函数的单调性,并说明理由; (2)若恒成立,求实数的取值范围.
如图,三棱柱ABC-A1B1C1中,BC⊥侧面AA1C1C,AC=BC=1,CC1=2, ∠CAA1=,D、E分别为AA1、A1C的中点. (1)求证:A1C⊥平面ABC;(2)求平面BDE与平面ABC所成角的余弦值.
甲、乙两人参加某种选拔测试.在备选的道题中,甲答对其中每道题的概率都是,乙能答对其中的道题.规定每次考试都从备选的道题中随机抽出道题进行测试,答对一题加分,答错一题(不答视为答错)减分,至少得分才能入选. (1)求甲得分的数学期望; (2)求甲、乙两人同时入选的概率.
已知公差不为0的等差数列的前项和为,,且成等比数列. (1)求数列的通项公式; (2)试推导数列的前项和的表达式。