为了缓解交通压力,某省在两个城市之间特修一条专用铁路,用一列火车作为公共交通车。已知每日来回趟数是每次拖挂车厢节数的一次函数,如果该列火车每次拖节车厢,每日能来回趟;如果每次拖节车厢,则每日能来回趟,火车每日每次拖挂车厢的节数是相同的,每节车厢满载时能载客人。(1)求出关于的函数;(2)该火车满载时每次拖挂多少节车厢才能使每日营运人数最多?并求出每天最多的营运人数?
已知函数满足 (1)求实数的值以及函数的最小正周期; (2)记,若函数是偶函数,求实数的值.
已知是椭圆上的一点,求到()的距离的最小值.
已知函数,若在定义域内存在,使得成立,则称为函数的局部对称点. (1)若、R且,证明:函数必有局部对称点; (2)若函数在区间内有局部对称点,求实数的取值范围; (3)若函数在R上有局部对称点,求实数的取值范围.
已知数列的前项和为,且,N* (1)求数列的通项公式; (2)已知(N*),记(且),是否存在这样的常数,使得数列是常数列,若存在,求出的值;若不存在,请说明理由. (3)若数列,对于任意的正整数,均有成立,求证:数列是等差数列;
如图,在两块钢板上打孔,用钉帽呈半球形、钉身为圆柱形的铆钉(图1)穿在一起,在没有帽的一端锤打出一个帽,使得与钉帽的大小相等,铆合的两块钢板,成为某种钢结构的配件,其截面图如图2.(单位:mm).(加工中不计损失). (1)若钉身长度是钉帽高度的2倍,求铆钉的表面积; (2)若每块钢板的厚度为mm,求钉身的长度(结果精确到mm).