已知:如图所示,抛物线y= -x2+bx+c与x轴的两个交点分别为 A(1,0),B(3,0)。(1)求抛物线的解析式;所有点P的坐标;(3)设抛物线交y轴于点C,问该抛物线对称轴上是否存在点M,使得△MAC的周长最小。若存在,求出点M的坐标;若不存在,请说明理由。
如图,已知△ABC,以点O为位似中心画一个△DEF,使它与△ABC位似,且相似比为2.
(1)2x2-9x+8=0(用公式法) (2)3x2-4x-6=0(配方法解) (3)(x-2)2=(2x+3)2(用合适的方法) (4)(5x-1)2-3(5x-1)=0(用合适的方法)
如图,二次函数y=x2+bx+c的图象交x轴于A、D两点,并经过B点,已知A点坐标是(2,0),B点的坐标是(8,6). (1)求二次函数的解析式. (2)求函数图象的顶点坐标及D点的坐标. (3)该二次函数的对称轴交x轴于C点.连接BC,并延长BC交抛物线于E点,连接BD,DE,求△BDE的面积. (4)抛物线上有一个动点P,与A,D两点构成△ADP,是否存在S△ADP=S△BCD?若存在,请求出P点的坐标;若不存在.请说明理由.
某水果批发商场经销一种高档水果,如果每千克盈利10元,每天可售出500千克.经市场调查发现,在进货价不变的情况下,若每千克涨价1元,日销售量将减少20千克. (1)现该商场要保证每天盈利6 000元,同时又要顾客得到实惠,那么每千克应涨价多少元? (2)若该商场单纯从经济角度看,每千克这种水果涨价多少元,能使商场获利最多?
如图所示,在抛物线y=-x2上有A,B两点,其横坐标分别为1,2;在y轴上有一动点C,使AC+BC距离最短,求C点的坐标.