如图,在平面直角坐标系xoy中,矩型ABCD的边AB在x轴上,且AB=3,BC=,直线y=经过点C,交y轴于点G 点C、D的坐标分别是C( ),D( ) 求顶点在直线y=上且经过点C、D的抛物线的解析式 将(2)中的抛物线沿直线y=平移,平移后的抛物线交y轴于点F,顶点为点E(顶点在y轴右侧)。平移后是否存在这样的抛物线,使⊿EFG为等腰三角形?若存在,请求出此时抛物线的解析式;若不存在,请说明理由。
如图,一次函数y=kx+2的图象与x轴交于点B,与反比例函数的图象的一个交点为(2,3).(1)分别求反比例函数和一次函数的表达式;(2)过点A作AC⊥x轴,垂足为C,若点P在反比例函数图象上,且△PBC的面积等于18,请直接写出点P的坐标.
如图,AB是⊙O 的直径,CD是⊙O的一条弦,且CD⊥AB于点E.(1)求证:∠BCO=∠D;(2)若CD=,AE=2,求⊙O的半径.
如图,热气球的探测器显示,从热气球看一栋高楼的顶部B的仰角为45°,看这栋高楼底的俯角为60°,热气球与高楼的水平距离AD 为20m,求这栋楼的高度.(结果保留根号)
如图,在△ABC中,D是AB上一点,且∠ABC=∠ACD.(1)求证:△ACD∽△ABC; (2)若AD=3,AB=7,求AC的长.
已知抛物线y=x2-4x+3.(1)用配方法将y=x2-4x+3化成y=a(x-h)2+k的形式;(2)求出该抛物线的对称轴和顶点坐标;(3)直接写出当x满足什么条件时,函数y<0.