(本小题满分14分)设函数f(x)=ln x+在(e,+∞)内有极值.(Ⅰ)求实数a的取值范围;(Ⅱ)记g(x)=f(x)+,判断g(x)的导函数g'(x)在定义域内的单调性;(Ⅲ)若k<f(x)+对任意x>1恒成立,求整数k的最大值
设矩形ABCD(AB>AD)的周长为24,把它关于AC折起来,AB折过去后交CD于点P,如图,设AB=x,求△ADP的面积的最大值,及此时x的值.
在数列{an}中,a1=1,当n≥2时,其前n项和Sn满足. (1)求Sn的表达式; (2)设bn=,求{bn}的前n项和Tn.
已知函数f(x)=cos(2x+)+sin2x (1)求函数f(x)的单调递减区间及最小正周期; (2)设锐角△ABC的三内角A,B,C的对边分别是a,b,c,若c=,cosB=求b.
已知A,B,C为△ABC的三个内角,其所对的边分别为a,b,c,且2cos2+cos A=0. (1)求角A的值; (2)若a=2,b+c=4,求△ABC的面积.
已知数列{an}是首项a1=4,公比q≠1的等比数列,Sn是其前n项和,且成等差数列. (1)求公比q的值; (2)求Tn=a2+a4+a6+…+a2n的值.