(本小题满分12分)已知向量m=(sinωx,cosωx),n=(cosωx,-cosωx),若函数f(x)=m·n的图象关于直线对称,其中ω取所有可能值中的最小正数值.(Ⅰ)求的周期和单调递增区间;(Ⅱ)△ABC中,如果f()=,b=4,且asinA-bsinB=sinC(c-b),求△ABC的面积.
抛物线的顶点在原点,焦点是圆x2+y2-4x=0的圆心,斜率为2的直线l过焦点,且与抛物线、圆依次交于点A、B、C、D,则|AB|+|CD|的值等于______________.
已知△AOB的一个顶点为抛物线y2=2x的顶点O,A、B两点都在抛物线上,且∠AOB=90°.(1)证明直线AB必过一定点;(2)求△AOB面积的最小值.
已知双曲线的中心在原点,对称轴为坐标轴,焦点在x轴上,两准线间的距离为,并且与直线y=(x-4)相交所得线段的中点的横坐标为-,求这个双曲线的方程.
如图所示,过双曲线x2-=1的右焦点作直线与双曲线交于A、B两点,若OA⊥OB(O为坐标原点),求AB所在直线的方程.
经过双曲线x2-=1的左焦点F1作倾斜角为的弦AB,求:(1)|AB|;(2)△F2AB的周长(F2为右焦点).