(本小题满分13分)已知函数(为常数且).(Ⅰ)讨论函数的单调性;(Ⅱ)若函数在点处的切线与直线平行,证明:对于任意的,都有成立.
设集合P={1,2,3}和Q={-1,1,2,3,4},分别从集合P和Q中随机取一个数作为和组成数对(,并构成函数(Ⅰ)写出所有可能的数对(,并计算,且的概率;(Ⅱ)求函数在区间[上是增函数的概率.
为了调查某厂2000名工人生产某种产品的能力,随机抽查了位工人某天生产该产品的数量,产品数量的分组区间为,,,,,频率分布直方图如图所示.已知生产的产品数量在之间的工人有6位.(Ⅰ)求;(Ⅱ)工厂规定从生产低于20件产品的工人中随机的选取2位工人进行培训,则这2位工人不在同一组的概率是多少?
已知函数f(x)=x2+2ax-3:(1)如果f(a+1)-f(a)=9,求a的值; (2)问a为何值时,函数的最小值是-4。
一个盒子中装有4张卡片,每张卡片上写有1个数字,数字分别是1、2、3、4。现从盒子中随机抽取卡片.(I)若一次抽取3张卡片,求3张卡片上数字之和大于7的概率;(II)若第一次抽1张卡片,放回后再抽取1张卡片,求两次抽取中至少一次抽到数字3的概率.
已知(Ⅰ)若,求的表达式;(Ⅱ)若函数和函数的图象关于原点对称,求函数的解析式;(Ⅲ)若在上是增函数,求实数的取值范围.