(本小题满分14分)已知函数,为常数.(Ⅰ)若函数在处的切线与轴平行.试比较与的大小;(Ⅱ)若函数有两个零点、,试证明.
如图:在空间四边形ABCD中,AB,BC,BD两两垂直,且AB=BC=2,E是AC的中点,异面直线AD和BE所成的角为,求BD的长度.(15分)
设向量并确定的关系,使轴垂直.
已知,求的值.
设,椭圆方程为,抛物线方程为.如图所示,过点作轴的平行线,与抛物线在第一象限的交点为,已知抛物线在点的切线经过椭圆的右焦点. (1)求满足条件的椭圆方程和抛物线方程; (2)设分别是椭圆长轴的左、右端点,试探究在抛物线上是否存在点,使得为直角三角形?若存在,请指出共有几个这样的点?并说明理由(不必具体求出这些点的坐标).
正四棱锥中,, 点M,N分别在PA,BD上,且. (Ⅰ)求异面直线MN与AD所成角; (Ⅱ)求证:∥平面PBC; (Ⅲ)求MN与平面PAB所成角的正弦值.